Digital 280-1 digital indicator

Digital 280-1

Digital 280-1

Digital 280-1

universal line
universal line

Digital 280-1

Diglta OQ Operating manual
English
9499-040-67311
Valid from: 8495

(ㅇuns) BlueControl

More efficiency in engineering, more overview in operating: The projecting environment for the BluePort ${ }^{\circledR}$ controllers

Description of symbols:

(i) General information
. General warning
Attention: ESD sensitive devices
© PMA Prozeß- und Maschinen-Automation GmbH • Printed in Germany All rights reserved.
No part of this document may be reproduced or published in any form or by any means without prior written permission from the copyright owner.

A publication of PMA Prozeß- und Maschinen Automation
P.O.Box 310229

D-34058 Kassel
Germany

Inhaltsverzeichnis

1 Mounting 5
2 Electrical connections 6
2.1 Connecting diagram 6
2.2 Terminal connection 6
3 Operation 10
3.1 Front view 10
3.2 Behaviour after power-on 10
3.3 Operating level 11
3.3.1 Min/max function 11
3.3.2 Tare function 12
3.3.3 Sample\&hold amplifier 12
3.3.4 $\quad \mathrm{O}_{2}$ measurement 13
3.3.5 Extended operating level 14
3.3.6 Alarm handling 15
3.4 Maintenance manager / Error list 16
4 Controller 17
4.1 Operation 17
4.2 Control parameters. 17
4.3 Self-tuning 18
4.3.1 Self-tuning start $(\square+\Delta)$ 18
4.3.2 Self-tuning cancellation 18
4.3.3 Acknowledgement procedures in case of unsuccessful self-tuning 19
4.3.4 Examples for self-tuning attempts 19
4.3.5 (controller inverse, heating or heating/cooling) 19
4.4 Manual tuning 20
4.5 Operating structure 22
5 Configuration level 23
5.1 Configuration survey 23
5.2 Configuration 24
5.3 Configuration examples 30
5.3.1 On-Off controller / Signaller (inverse) 30
5．3．2 2－point controller（inverse） 31
5．3．3 Continuous controller（inverse） 32
5．3．4 Digital 280－1 with measured value output 33
6 Parameter setting level 34
6.1 Parameter survey 34
6．2 Parameter 35
6.3 Input scaling 36
6．3．1 Input 1 のロ゙ 36
7 Calibration level 37
7.1 Offset correction 37
8 BlueControl 40
9 Versions 41
10 Technical data 42
11 Safety hints 46
11.1 Resetting to factory setting 47

1 Mounting

Safety switch:
For access to the safety switches, the indicator must be withdrawn from the housing. Squeeze the top and bottom of the front bezel between thumb and forefinger and pull the controller firmly from the housing..

$10 \mathrm{~V} \mathrm{~mA} / \mathrm{Pt}$	right 0	Current signal/ Pt100/ /hermocouple/mV at / np
	left	Voltage signal (V) at n^{P}
Loc	open	Access to the levels is as adjusted by means of BlueControl (engineering tool) (2)
	closed (1)	all levels accessible wihout restriction

(1) Factory setting
(2) Default setting: display of all levels suppressed, password P855 = MFF safety switch open may lead to faulty functions!
Caution! The unit contains ESD-sensitive components.

2 Electrical connections

2.1 Connecting diagram

* Safety switch $\mathrm{mA} \leftrightarrow \mathrm{V}$ in position left
(i) The indicator is provided with screw terminals from 0,5 to $2,5 \mathrm{~mm}^{2}$.

2.2 Terminal connection

Power supply connection (1)
See chapter 10 "Technical data"
Connection of input INP1
Input for variable x 1 (process value)
a thermocouple
b resistance thermometer (Pt100/ Pt1000/ KTY/ ...)
c potentiometer
d current ($0 / 4 \ldots . .20 \mathrm{~mA}$)
e voltage (-2,5...115/-25...1150/-25...90/-500...500mV)
f voltage ($0 / 2 \ldots 10 \mathrm{~V} /-5 \ldots 5 \mathrm{~V}$)

Connection of input dil ©

Digital input, configurable as switch or push-button

Connection of outputs OUT1/2 4

Relay outputs $250 \mathrm{~V} / 2 \mathrm{~A}$ normally open with common contact connection

Connection of output OUT3 5

g logic ($0 . .20 \mathrm{~mA} / 0 . .12 \mathrm{~V}$)
h voltage ($0 / 2 \ldots 10 \mathrm{~V}$)
i current ($0 / 4 \ldots 20 \mathrm{~mA}$)
i transmitter power supply

Connection of inputs di2/3 6 (option)

Digital inputs (24VDC external), galvanically isolated, configurable as switch or push-button

Connection of output $U_{T}(7$ (option)
Supply voltage connection for external energization

Connection of bus interface 8 (option)

RS422/485 interface with Modbus RTU protocol

67 di2/3, $U_{T} 2$-wire transmitter supply

(6) OUT3 transmitter supply

4If U_{T} and the universal output OUT3 is used there may be no external galvanic connection between measuring and output circuits!

Electrical connections

(6) OUT 3 als Logikausgang mit Solid-State-Relais (Reihen- und Parallel-Schaltung)

(9) RS485 interface (with RS232-RS485 interface converter)

* Interface description Modbus RTU in seperate manual: see page 41.

Connecting exampleDigital 280-1:

(1) TB 40-1 temperature limiter standard-version (3 relay) TB40-100-0000D-000
\rightarrow further versions on demand
CAUTION:
Using a temperature limiter is recommendable in systems where overtemperature implies a fire hazard or other risks.

Operation

3 Operation

3.1 Front view

(1) measured value display
(2) statuses of switching outputs [ut. i...3(or alarm statuses)
(3) lit with self-tuning activated
(4) lit with tare or sample \& hold function activated
(5) lit with entry in the error list
(6) function-key
(7) down-key

8 up-key
(9) enter-key: calls up extended operating level/ errorlist
(10) pc connection for BlueControl (engineering-tool)

The measured value is displayed as standard. At parameter setting, configuration, calibration level and at the extended operating level, the display changes cyclically between parameter name and parameter value.

3.2 Behaviour after power-on

After supply voltage switch-on, the unit starts with the operating level.
The unit is in the condition which was active before power-off.

3.3 Operating level

3.3.1 Min/max function

The minimum and maximum values are stored.

Deleting the minimum value
Keeping the \square key pressed whilst actuating key \square deletes the minimum value.
Additionally, determination whether a digital input or key è should delete the minimum value is possible during configuration (r ESLL).
Deleting the minimum and maximum values can be done also via interface.
Deleting the maximum value
Keeping the \triangle key pressed whilst actuating key ∇ deletes the maximum value. Additionally, determination whether a digital input or key è should delete the maximum value is possible during configuration (r E 5.4).
Deleting the minimum and maximum values can be done also via interface.
(i) When switching off Digital 280-1, minimum and maximum values are deleted.

3.3.2 Tare function

When switching on the tare function, the instantaneous measured value is set to zero. In this case, measurement is continued with this offset. By switching off the tare function, the actual measured value is displayed again.

Tare can be activated during configuration $\left(F_{\text {unc }} \rightarrow \boldsymbol{F}_{\text {nc. }}:=1\right.$).
Dependent of configuration, tare can be made effective via one of the digital in-

3.3.3 Sample\&hold amplifier

With the sample \& hold function activated, the measured value is held on the display. By switching off the sample \& hold function, the actual measured value is displayed again.

Sample \& hold can be activated during configuration ($F_{\text {unc }}^{\rightarrow} \rightarrow \boldsymbol{F} \boldsymbol{n c}: \mathbf{I}=2$).
Dependent of configuration, sample \& hold can be made effective via one of the

3.3.4 O_{2} measurement

For measurement, lambda probes (λ probes) are used.
The electromotive force (in Volt) supplied by the λ probes is dependent of the instantaneous oxygen content and of the temperature. Therefore, Digital 280-1 can display accurate measurement results only, provided that the probe temperature is known to the indicator.
Enter the temperature in ${ }^{\circ} \mathrm{C}$ in parameter $E E \mathrm{n}^{\circ}$. When using heated λ probes, the probe temperature can be entered directly. When using non-heated λ probes, however, the displayed values can be accurate only for a narrow temperature band.

Unless the probe temperature is known, we recommend using our KS90-1
Oxygen (temperature measurement via a second input).
Configuration:
Adjust O_{2} measurement in function 1:

Func \rightarrow Finc.	3	02 measurement

Display: The displayed value is always a $\%$ value.
As it is mostly necessary to cover a wide measuring range, we recommend adjusting a high number of digits behind the decimal point during configuration, whereby loss of high values is prevented due to floating decimal point display (0,0001 (1 ppm) to 99999 is possible) .

Specify the number of digits behind the decimal point below othr :

-thr \rightarrow dr	0	0 digits behind the decimal point
	1	1 digit behind the decimal point
	2	2 digits behind the decimal point
	3	3 digits behind the decimal point
	4	4 digits behind the decimal point

Adjust the sensor type to one of the high-impedance voltage inputs in InP:

Specification in BlueControl			Effective measuring range
	41	Special ($0 . . .100 \mathrm{mV}$)	$-2,5 \ldots 115 \mathrm{mV}$
	42	Special (0... 1000 mV)	-25... 1150 mV
	43	Special ($-25 . . .90 \mathrm{mV}$)	
	44	Special (-500...500 mV)	

These high-impedance inputs are not provided with break monitoring. If necessary, measurement input protection is possible via limit value processing.

3.3.5 Extended operating level

The content of the extended operating level is determined by means of BlueControl (engineering tool). Parameters which are important or which are used frequently can be copied into the extended operating level.

Actuating key \square switches to the first value
 of the extended operating level (may be preceded by error list or set-point).
The selected parameters can be changed by pressing keys ∇ and \triangle.

Press \square to go to the next parameter.

Press \square to return to the normal display after the last parameter .

3.3.6 Alarm handling

Max. three alarms can be configured and assigned to the individual outputs. Generally, outputs int. 1 ... ©ut. 3 can be used each for alarm signalling. If more than one signal is linked to one output the signals are OR linked. Each of the 3 limit values L iñ $4 \ldots$... iñ. 3 has 2 trigger points H.x (Max) and L.x (Min), which can be switched off individually (parameter $=$ "GFF"). Switching difference H45.x of each limit value is adjustable.

Operaing principle absolut alarm

Operating principle relative alarm
L. $1=\mathrm{BFFF}$

H: $\mathrm{A}=\mathrm{BF}$
$\mathrm{H}: \mathrm{I}=\mathrm{BF}$

normally open (CanF/But.x/DRct=1)

The variable to be monitored can be selected seperately for each alarm via configuration
The following variables can be monitored:

- process value
- control deviation xw (process value - set-point)
- control deviation xw + suppression after start-up or set-point change As there is automatically a control deviation after starting up and after set-point changes, however, the alarm is suppressed, until the signal was within the limits once.
- Set-point
- Correcting variable y (controller output signal)

If measured value monitoring + alarm status storage is chosen ($[$ anF/L in / $F_{n c: x}^{z}$), the alarm relay remains switched on until the alarm is resetted in the error list ($\left.\begin{array}{l}\mathrm{L} \\ \text { in } \\ \mathbf{i} \\ \text {.. } \\ \mathrm{I}=\mathbf{1}\end{array}\right)$ or via interface.

3.4 Maintenance manager / Error list

In case of one or several errors, the extended operating level always starts with the error list. A current entry into the error list (alarm or error) is displayed by the Err LED in the display.

For displaying the error list, pressing 1x \square is necessary. (with configuration as a controller, press $2 \times \square$).

Err LED status	Signification	Proceed as follows
blinks	Alarm due to existing error	- Determine the error type in the error list via the error number - Remove the error
lit	Error removed, Alarm not acknowledged	- Acknowledge the alarm in the error list pressing key Δ or $\boldsymbol{\nabla}$ - The alarm entry was deleted.
off		No error, all alarm entries deleted

Saved alarms (Err-LED is lit) can be acknowledged and deleted with the digital input di1/2/3 or the 包-key.
Configuration, see page 31: LanF/LREI/Err.s
If an alarm is still valid that means the cause of the alarm is not removed so far (Err-LED blinks), then other saved alarms can not be acknowledged and deleted.

Error status	Signification	
\square	Existing error	Change to error status 1 after error removal
\boldsymbol{I}	Stored error	Change to error status 0 after acknowledgement in error list
\square	No error/message	not visible, except with acknowledgement

4 Controller

In addition to the simple indicator function, Digital 280-1 can be used also as a signaller or an on/off controller, as a two point or a continuous controller.

Prerequisite: Digital 280-1 is fitted with option "with outputs" and is configured for the controller function.

Configuration:
Function 2 provides selection between indicator and controller:

Func \rightarrow Fnc.e	Controller

4.1 Operation

Adjusting the set-point

4.2 Control parameters

The range of different processes to be controlled is very wide, from very fast pressure control to very slow thermal processes such as control of a blast furnace. As the controller behaviour has to be different with each of these processes, the control parameters must be adjusted for the relevant process individually. Adjustment can be done either manually or by the controller itself.

4.3 Self-tuning

After starting by the operator, the controller makes a self-tuning attempt. The controller uses the process characteristics for quick line-out to the set-point without overshoot.

Self-tuning start can be locked via BlueControl (engineering tool) (PLiLE).
\mathbf{L}_{1} and td are taken into account only, if they were $\neq \mathbb{G F F}$ previously.

4.3.1 Self-tuning start ($-\boxed{\square}$)

The operator can start self-tuning at any time. For this, keys \square and \triangle must be pressed simultaneously. The AdA LED starts blinking.
The controller outputs 0% or 4 La , waits until the process is at rest and starts self-tuning (AdA LED
 lit permanently).

The self-tuning attempt is started when the following prerequisite is met:

- The difference between process value \leftrightarrow set-point must be $\geq 10 \%$ of the set-point range (5P. than set-point, with direct action: process value higher than set-point).

After successful self-tuning, the AdA-LED is off and the controller continues operating with the new control parameters.

4.3.2 Self-tuning cancellation

By the operator:

Self-tuning can always be cancelled by the operator. For this, press \square and Δ key simultaneously. The controller continues operating with the old parameters.

By the controller:

If the Err LED starts blinking whilst self-tuning is running, successful self-tuning is prevented due to the control conditions. In this case, self-tuning was cancelled by the controller.
Dependent of control type, the output status is:

- 3-pnt. stepping controller: actuator is closed (0% output)
- 2-pnt./ 3-pnt./ continuous controller: If self-tuning was started from the automatic mode, the controller output is 0%. With self-tuning started from manual mode, the controller output is Y2.

Error-Status Selfoptimization

Error status	Description	Behaviour
0	No error	
3	Faulty control action	Re-configure controller (inverse $\leftrightarrow \rightarrow$ direct)
4	No response of process variable	The control loop is perhaps not closed: check sensor, connections and process
5	Low reversal point	Increase (ADA.H) max. output limiting Y.Hi or decrease (ADA.C) min. output limiting Y.Lo
6	Danger of exceeded set-point (parameter determined)	If necessary, increase (inverse) or reduce (direct) set-point
7	Output step change too small (dy >5\%)	Increase (ADA.H) max. output limiting Y.Hi or reduce (ADA.C) min. output limiting Y.L0
8	Set-point reserve too small	Increase set-point (inverse), reduce set-point (direct) or increase set-point range(r PArA / SEtp YSP.LO and SP.Hi)

4.3.3 Acknowledgement procedures in case of unsuccessful self-tuning

1. Press keys \square and Δ simultaneously:

The controller continues controlling using the old parameters The Err LED continues blinking, until the self-tuning error was acknowledged in the error list.
2. Press key :

Display of error list at extended operating level. After acknowledgement of the error message, the controller continues control using the old parameters.

4.3.4 Examples for self-tuning attempts

4.3.5 (controller inverse, heating or heating/cooling)

Start: heating power switched on

Heating power Y is switched off (1). When the change of process value X was constant during one minute (2), the power is switched on (3).
At the reversal point, the self-tuning attempt is finished and the new parameter are used for controlling to set-point W.

Start: heating power switched off

The controller waits 1,5 minutes (1). Heating power Y is switched on (2).
At the reversal point, the self-tuning attempt is finished and control to the set-point is using the new parameters.

Start: at set-point

Heating power Y is switched off ($\mathbf{(1)}$). If the change of process value X was constant during one minute and the control deviation is $>10 \%$ of 5 P. H , 5 5.L. (2), the power is switched on (3). At the reversal point, the self-tuning attempt is finished, and control to set-point W is using the
 new parameters.

4.4 Manual tuning

The optimization aid should be used with units on which the control parameters shall be set without self-tuning.
For this, the response of process variable x after a step change of correcting variable y can be used. Frequently, plotting the complete response curve (0 to 100%) is not possible, because the process must be kept within defined limits. Values T_{g} and $\mathrm{x}_{\text {max }}$ (step change from 0 to 100%) or $\Delta \mathrm{t}$ and $\Delta \mathrm{x}$ (partial step response) can be used to determine the maximum rate of increase $\mathrm{v}_{\text {max }}$.

$\mathrm{y}=$ correcting variable
$\mathrm{Y}_{\mathrm{h}}=$ control range
$\mathrm{Tu}=$ delay time (s)
$\mathrm{Tg}=$ recovery time (s)
$\mathrm{X}_{\text {max }}=$ maximum process value
$\mathrm{V}_{\text {max }}=\frac{X \max }{T g}=\frac{\Delta x}{\Delta t} \xlongequal{ }$ max. rate of increase of process value

The control parameters can be determined from the values calculated for delay time T_{u}, maximum rate of increase $v_{\text {max }}$, control range X_{h} and characteristic K according to the formulas given below. Increase Xp , if line-out to the set-point oscillates.

Parameter adjustment effects

Parameter	Control	Line-out of disturbances	Start-up behaviour
Pb i higher	increased damping	slower line-out	slower reduction of duty cycle
lower	reduced damping	faster line-out	faster reduction of duty cycle
Ld i higher	reduced damping	faster response to disturbances	faster reduction of duty cycle
lower	increased damping	slower response to disturbances	slower reduction of duty cycle
E I higher	increased damping	slower line-out	slower reduction of duty cycle
lower	reduced damping	faster line-out	faster reduction of duty cycle

$\mathrm{K}=\mathrm{Vmax}^{*} \mathrm{Tu}$
With 2-point and 3-point controllers, the cycle time must be adjusted to t1 / t2 £ 0,25*Tu

Formulas

controller behavior	$\mathrm{Pb} 1[$ phy. units $]$	$\mathrm{td} 1[\mathrm{~s}]$	til $[\mathrm{s}]$
PID	$1,7^{*} \mathrm{~K}$	$2^{*} \mathrm{Tu}$	$2^{*} \mathrm{Tu}$
PD	$0,5^{*} \mathrm{~K}$	Tu	OFF
PI	$2,6^{*} \mathrm{~K}$	OFF	$6^{*} \mathrm{Tu}$
P	K	OFF	OFF
3-point-stepping	$1,7^{*} \mathrm{~K}$	Tu	$2^{*} \mathrm{Tu}$

4.5 Operating structure

After supply voltage switch-on, the controller starts with the operating levels.

PRAR - level:
At $P R-R$ - level, the right decimal point of the upper display line is lit continuously.
[anf-level:
At [anF-level, the right decimal point of the upper display line blinks
When safety switch Loc is open, only the levels enabled by means

PASS

 of BlueControl (engineering tool) are visible and accessible by entry of the password adjusted by means of BlueControl (engineering tool). Individual parameters accessible without password must be copied to the extended operating level.Factory setting: Safety switch Loc closed: all levels accessible without restriction, password 9 P55 $=$ MF F.

Safety switch Loc	Password entered with BluePort	Function disabled or enabled with BluePort $®$	Access via the instrument front panel:
closed	OFF / password	disabled / enabled	enabled
open	OFF / password	disabled	disabled
open	OFF	enabled	enabled
open	Password	enabled	enabled after password entry

5 Configuration level

5.1 Configuration survey

Adjustment:

- The configuratiuons can be adjusted by means of keys \square
- Transition to the next configuration is by pressing key
- After the last configuration of a group, danE is displayed and followed by automatic change to the next group
(i) Return to the beginning of a group by pressing the \square key for 3 sec.

5.2 Configuration

Dependent of instrument version and configuration, spare parameters are not displayed.

Func

name	value range	description	default
Fne. 1		function 1	0
	0	no function	
	1	tare - function	
	2	sample \& hold	
	3	O2-measuring	
FnE.i		function 2	0
	0	indicator	
	1	controller	
L.fnc		controller behavior (algorithm)	1
	0	on/off controller e.g. signaller with one output	
	1	PID-controller (2-point and continuous)	
E.AEt		operating principle of the controller	0
	0	inverse, e.g. heating	
	1	direct, e.g. cooling	
robut	-19999... 99999	X0 (lower controlrange limit) 1	-100
Fncuth	-19999... 99999	X100 (upper controlrange limit) (1)	1200

(1) rnbil and in int indicate the control range to which self-tuning refers.

1 np

$\frac{\text { name }}{5.159}$	value range	description	default
		sensortype	1
	0	thermocouple type L ($-100 \ldots . .900^{\circ} \mathrm{C}$), $\mathrm{Fe}-\mathrm{CuNi} \mathrm{DIN}$	
	1	thermocouple type J ($\left.-100 \ldots 1200^{\circ} \mathrm{C}\right)$, $\mathrm{Fe}-\mathrm{CuNi}$	
	2	thermocouple type $\mathrm{K}\left(-100 \ldots 1350{ }^{\circ} \mathrm{C}\right)$, $\mathrm{NiCr}-\mathrm{Ni}$	
	3	thermocouple type $\mathrm{N}\left(-100 \ldots 1300^{\circ} \mathrm{C}\right)$, Nicrosil-Nisil	
	4	thermocouple type S ($0 \ldots .1760^{\circ} \mathrm{C}$), PtRh-Pt10\%	
	5	thermocouple type R ($0 \ldots . .1760^{\circ} \mathrm{C}$), PtRh-Pt13\%	
	6	thermocouple type T ($-200 \ldots . .400^{\circ} \mathrm{C}$), $\mathrm{Cu}-\mathrm{CuNi}$	
	7	thermocouple type C ($\left.0 \ldots . .2315^{\circ} \mathrm{C}\right)$, W5\%Re-W26\%Re	
	8	thermocouple type D ($0 . .2315^{\circ} \mathrm{C}$), W3\%Re-W25\%Re	
	9	thermocouple type E (-100...1000 ${ }^{\circ} \mathrm{C}$), NiCr-CuNi	
	10	thermocouple type B ($0 / 100 \ldots 1820^{\circ} \mathrm{C}$), PtRh-Pt6\%	
	18	thermocouple Sonder (linearization necessary)	
	20	pt100 (-200.0 \ldots. $100,0^{\circ} \mathrm{C}$)	
	21	pt100 (-200.0 $\left.\ldots .850,0^{\circ} \mathrm{C}\right)$	
	22	pt1000 (-200.0...8500.0 ${ }^{\circ} \mathrm{C}$)	
	23	special 0... 4500 Ohm (preset to KTY11-6)	
	24	special 0... 450 Ohm (scaling necessary)	
	30	$0 \ldots .20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$ (scaling necessary \rightarrow page 36)	
	40	$0 \ldots 10 \mathrm{~V} / 2 \ldots 10 \mathrm{~V}$ (scaling necessary \rightarrow page36)	

name	value range	description	default
5.15	41	special ($-2,5 \ldots 115 \mathrm{mV}$ scaling necessary \rightarrow page 36)	
	42	special ($-25 \ldots . .1150 \mathrm{mV}$ scaling necessary \rightarrow page 36)	
	43	special ($-25 \ldots . .90 \mathrm{mV}$ scaling necessary \rightarrow page 36)	
	44	special (-500...500 mV scaling necessary \rightarrow page 36)	
	45	special ($-5 . .5 \mathrm{~V}$ scaling necessary \rightarrow page 36)	
	50	potentiometer 0...160 0hm	
	51	potentiometer 0... 450 Ohm	
	52	potentiometer 0... 16000 hm	
		linearization only adjustable with 5.5 yP $^{\text {P }}: 18,23,24,30,40 . . .45$	0
	0	none	
	1	Special linearization Editing the linearization table with BlueControl (engineering tool) is possible. The characteristic for KTY 11-6 temperature sensors is factory-set.	
Larr		measurement value correction / scaling	0
	0	no correction	
	1	offset-correction (in [8L - level)	
	2	2-point-correction (in [ML - level)	
	3	scaling (in PR,	
fAI1		forcing INP (only visible with BlueControl!)	0
	0	no forcing	
	1	forcing via interface	

1.17

name	value range	description	default
Fnc. 1		function of limit $1(2,3)$	1
$\begin{aligned} & F \cap E . z \\ & F n E . z \end{aligned}$	0	switched off	
	1	measured value monitoring	
	2	measured value monitoring + storing of alarm status. A stored limit value can be set back via error list or digital input or 	
	3	signal change	
	4	signal change + storing of alarm status. A stored limit yalue can be set back via error list or digital input or 	
$\begin{aligned} & 51-E .1 \\ & 51-6.2 \\ & 51-6.3 \end{aligned}$		source for limit value $1(2,3)$	0
	0	process value $=$ absolut alarm	
	1	control deviation Xw (processvalue - set-point) = relative alarm	
	2	control deviation Xw (=relative alarm) with suppression at start and with set-point change	
	3	measured value INP	
	6	set-point	
	7	y (controller output)	
Hour	OFF. 999999	operating hours (only visible with BlueControl!)	OFF
Swit	OFF.. 999999	operation cycle number (only visible with BlueControl!)	OFF

Configuration level

But. 1 und But.e'

$\frac{\text { name }}{1.4 c t}$	value range	description	default
		circuit direction of output OUT1	0
	0	direct / open circuit principle	
	1	inverse / closed circuit priciple	
3.1		controller output Y1	0
	0	not active	
	1	active	
		message limit value $1 / 2 / 3$	
	0	not active	
	1	active	But. 1/2/3
		message INP error	0
	0	not active	
	1	active	
fout		forcing OUT1 (2) (only visible with BlueControl!)	0
	0	no forcing	
	1	forcing via interface	

But. 3

name 4.1590	value range	description	default
		signaltype OUT3	0
	0	relay / logic	
		0 ... 20 mA continuous	
	2	$4 \ldots 20 \mathrm{~mA}$ continuous	
	3	$0 . . .10 \mathrm{~V}$ continuous	
	4	$2 . .10 \mathrm{~V}$ continuous	
	5	transmitter supply	
HREL		circuit direction of output OUT3 (only visible with 0.TYP=0)	1
	0	direct / open circuit principle	
	1	inverse / closed circuit priciple	
3.1		controller output Y1 (only visible with 0.TYP=0)	0
	0	not active	
		active	
L 17.1		message limit value 1 (only visible with 0.TYP=0)	1
	0	not active	
	1	active	
$\begin{array}{ll} 1 & 10.0 . j \\ 1 & 10 . z \end{array}$		message limit value $2 / 3$ (only visible with $0 . T Y P=0$)	0
	0	not active	
	1	active	
FH1. 1		message INP-error (only visible with 0.TYP=0)	1
	0	not active	
	1	active	
Hut.til	$\begin{array}{r} -19999 . . \\ 99999 \end{array}$	scaling of analog output for $0 \%(0 / 4 \mathrm{~mA}$ e.g. $0 / 2 \mathrm{~V}$, only visible with 0.TYP=1.5)	0
Iut.i	$\begin{array}{r} -19999 . \ldots . . \\ 99999 \end{array}$	scaling of analog output for $\mathbf{1 0 0 \%}$ (20 mA bzw. 10 V , only visible with $0 . T Y P=1 . .5$)	100

name	value range	description	default
M. 150		signalsource for analog output OUT3 (only visible with 0.TYP=1..5)	1
	0	not active	
	1	controller output yl (continuous)	
	3	process value	
	4	effective set-point Weff	
	5	control deviation xw (process value - set-point)	
fOut		forcing OUT3 (only visible with BlueControl!)	0
	0	no forcing	
	1	forcing via interface	

L05:

name	value range	description	default
1.-5		local / remote swith-over (remote: adjustment of all values via front is blocked)	0
	0	no function (switch-over via interface is possible)	
	1	always active	
	2	dil switches	
	3	di2 switches(only visible with OPTION)	
	4	di3 switches(only visible with OPTION)	
	5	F -key switches	
ErローM		reset of all stored messages of the errorlist	0
	0	no function (switch-over via interface is possible)	
	2	dil switches	
	3	di2 switches (only visible with OPTION)	
	4	di3 switches (only visible with OPTION)	
	5	[F] -key switches	
LM-			0
	0	no function (switch-over via interface is possible)	
	2	dil switches	
	3	di2 switches (only visible with OPTION)	
	4	di3 switches (only visible with OPTION)	
	5	[F] -key switches	
H6L			0
	0	no function (switch-over via interface is possible)	
	2	dil switches	
	3	di2 switches (only visible with OPTION)	
	4	di3 switches (only visible with OPTION)	
	5	[F] -key switches	
1-5.			0
	0	no function (switch-over via interface is possible)	
	2	dil switches	
	3	di2 switches (only visible with OPTION)	
	4	di3 switches (only visible with OPTION)	
	5	F -key switches	

Configuration level

$\frac{\text { name }}{r E 5 . H}$	value range	description	default
			0
	0	no function (switch-over via interface is possible)	
	2	dil switches	
	3	di2 switches (only visible with OPTION)	
	4	di3 switches (only visible with OPTION)	
	5	(F) -key switches	
d $1 . f 0$		function of digital inputs (valid for all inputs)	0
	0	direct	
	1	inverse	
	2	keyfunction (adjustable for 2-point-operation with interface and dil/2/3 or front-key)	
fDI1 fDI2 fDI3		forcing di1/di2/di3 (only visible with BlueControl!)	0
	0	no forcing	
	1	forcing via interface	

othr

$\frac{\text { name }}{b H_{u d}}$	value range	description	default
		baudrate of interface (only visible with OPTION)	2
	0	2400 baud	
	1	4800 baud	
	2	9600 baud	
	3	19200 baud	
$\begin{aligned} & \text { Rod } \\ & \text { Pry } \end{aligned}$	1... 247	adresse of Schnittstelle (only visible with OPTION)	1
		parity of data on interface (only visible with OPTION)	1
	0	no parity (2 stopbits)	
	1	even parity	
	2	odd parity	
	3	no parity with 1 stopbit	
$\begin{aligned} & \text { dELY } \\ & \text { Lin } t \end{aligned}$	0...200	response delay [ms\| (only visible with OPTION)	0
		unit	1
	0	no unit	
	1	${ }^{\circ} \mathrm{C}$	
	2	${ }^{\circ} \mathrm{F}$	
\square^{9}		dezimalpoint (max. dezimalpoint)	0
	0	no decimalplace	
	1	1 decimalplace	
	2	2 decimalplaces	
	3	3 decimalplaces	
	4	4 decimalplaces	
di 5		measuring value display	1
	1	full display resolution	
	2	display resolution $=2$ digits	
	3	display resolution $=5$ digits	
	4	display resolution= 10 digits	
	5	display resolution=20 digits	
	6	display resolution= 50 digits	
	7	display resolution= 100 digits	

name	value range	description	default
L.dEL	$0 . .200$	modem delay [ms]	(0)
FrEq		switch-over $50 / 60 \mathrm{~Hz}$ (only visible with BlueControl!)	0
	0	netfrequency 50 Hz	
	1	netfrequency 60 Hz	
IAdA		blocked selfoptimization (only visible with BlueControl!)	0
	0	free	
	1	blocked	
IExo		extended operation level blocked (only visible with BlueControl!)	0
	0	free	
	1	blocked	
ILat		suppression error memory	
	0	free	
	,	blocked	
Pass	OFF...99999	password -19999 ... 99999	0FF
IPar		parameterlevel blocked (only visible with BlueControl!)	1
	0	free	
	1	blocked	
ICnf		configurationlevel blocked (only visible with BlueControl!)	1
	0	free	
	1	blocked	
ICal		calibrationlevel blocked (only visible with BlueControl!)	1
	0	free	
	1	blocked	

Resetting the controller configuration to factory setting (Default)

 \rightarrow chapter 11.1 (page 47)
BlueControl - the engineering tool for the BluePort ${ }^{\circledR}$ controller series

Three engineering tools with different functionality facilitating Dig 280-1 configuration and parameter setting are available (see chapter 8 : Accessory equipment with ordering information). In addition to configuration and parameter setting, the engineering tools are used for data acquisition and offer long-term storage and print functions. The engineering tools are connected to Dig 280-1 via the front-panel interface "BluePort ${ }^{\circledR}$ " by means of PC (Windows 95 / 98 /NT) and a PC adaptor.
Description BlueControl: see chapter 8: BlueControl (page 40)

Configuration level

5.3 Configuration examples

5.3.1 On-Off controller / Signaller (inverse)


```
[anF/Entr: 5PFn =
    CFnc = 0
    RREL = 0
[anF/But.!: BREt = B
    3. \(1=1\)
PRAR / Entr: 5H = 0... 9999
```

PR-R / SELP: 5PLI = -1999... 9999 set-point limit low for Weff
5P.H1 = -1999... 9999 set-point limit high for Weff

For direct signaller action, the controller action must be changed (LanF / Entr / CALE = 1)

5.3.2 2-point controller (inverse)

EanF / [ntr: 5PFn=0
COFAE $=1$
CAEL $=0$
[anF/But.1: BREt = a
y. $1=1$

PRrR/Entr: Pb: = 0,1... 9999
Ł.: = 1... 9999
tdi = 1... 9999
t $=0,4 \ldots 9999$
PRAR / 5ELP: 5PLL $=-1999 \ldots 9999$
5P.H1 = -1999... 9999
set-point controller
2-point controller (PID) inverse action
(e.g. heating applications)
action 10 . 1 direct
control output Y1 active proportional band 1 (heating)
in units of phys. quantity (e.g. ${ }^{\circ} \mathrm{C}$)
integral time 1 (heating) in sec.
derivative time 1 (heating) in sec.
min. cycle time 1 (heating)
set-point limit low for Weff
set-point limit high for Weff
(t) For direct action, the controller action must be changed (EanF / Entr / CRat = 1) .

Configuration level

5.3.3 Continuous controller (inverse)

$$
\text { EanF/Entr: } \begin{aligned}
5 P F n & =0 \\
\text { CFnc } & =1 \\
\text { EAct } & =\square
\end{aligned}
$$

[anF/But.3: BLyp=1/2
But. $=-1999 \ldots 9999$
But.i = -1999... 9999
PRーR/EnEr: Pb: = 0, 1...9999
t.: = 1... 9999
tdi = 1... 9999
$t:=0,4 \ldots 9999$
PRIR / SELP: 5P:D $=-1999 . . .9999$
5P.H1 = -1999... 9999
set-point controller
continuous controller (PID)
inverse action
(e.g. heating applications)

But. 3 type ($0 / 4 \ldots 20 \mathrm{~mA}$)
scaling analog output $0 / 4 \mathrm{~mA}$
scaling analog output 20 mA
proportional band 1 (heating) in units of phys. quantity (e.g. ${ }^{\circ} \mathrm{C}$)
integral time 1 (heating) in sec.
derivative time 1 (heating) in sec.
min. cycle time 1 (heating)
set-point limit low for Weff
set-point limit high for Weff

For direct action of the continuous controller, the controller action must be

 switching simultaneously, the control function of outputs $\mathbb{D} u$ E. 1 and $\mathbb{D} u$ E. E^{2}

5.3.4 Digital 280-1 with measured value output

[anF/But.]: BLyP =
$=2$
$=3$
$=4$
But. $\quad=-1999 \ldots 999$
But. $1=-1999 . . .9999$
0.5ra=3

But. $30 . . .20 \mathrm{~mA}$ continuous
But. 3 4... 20 mA continuous
But. $30 \ldots 10 \mathrm{~V}$ continuous
Gut.3 2...10V continuous scaling Put. 3
for $0 / 4 \mathrm{~mA}$ or $0 / 2 \mathrm{~V}$
scaling Put. 3
for 20 mA or 10 V
signal source for 1.3 t. 3 is the process value

6 Parameter setting level

6.1 Parameter survey

Depending on unit version and configuration spare parameters are not shown.

Adjustment:

- The parameters can be adjusted by means of keys $\Delta \square$
- Transition to the next parameter is by pressing key \square
- After the last parameter of a group, donE is displayed, followed by automatic change to the next group.
Return to the beginning of a group is by pressing the \square key for $\mathbf{3} \mathbf{~ s e c}$.
If for $\mathbf{3 0}$ sec. no keypress is excecuted the controler returns to the process value and setpoint display (Time Out = $\mathbf{3 0} \mathbf{~ s e c}$.)

6.2 Parameter

Funis

name	value range	description	default
LESP	1... 99999 (1)	probetemperature for O_{2} measuring	650
Ph!	1... 99999 (1)	proportional band in phys. unit (z.B. ${ }^{\circ} \mathrm{C}$)	100
E11	1... 99999	reset time $1[\mathrm{~s}] \quad(\mathrm{til}=0 \wedge$ off $=$ switched off)	180
Ldi	1... 99999	derivative timel (heating) $[\mathrm{s}](\mathrm{td} 1=0 \wedge \mathrm{off}=\mathrm{switched}$ off)	180
t1	0,4...99999	min. cycle duration (heating) [s]. The smallest pulse duration is $1 / 4 \mathrm{xtl}$	10
$5 H$	0... 9999	neutral zone, e.g. switching difference signalunit [phys. unit]	2
35	-120...120	2nd control value [\%] becomes effective with recognized process value error -f:	0
41.10	-120...120	lower controller value limit [\%]	0
Y.H1	-120...120	upper controller value limit [\%]	100
4.15	-120...120	working point for controller value [\%]	0
$5 P .20$	-99999...99999	lower set-point limit [phys. unit]	0
5 SFH	-99999...99999	upper set-point limit [phys. unit]	100

(1) Valid for [anF/athr/dP=R.At $d P=/ / 2 / 3 / 4$ so $0,1 / 0,01 / 0,001,0,0001$.
$10 p$

name	value range	description	default
1 ni	-19999... 99999	input value of lower scaling point	0
HuL	-19999... 99999	display value of lower scaling point	0
1 nH	-19999... 99999	input value of upper scaling point	20
HaH	-19999... 99999	display value of upper scaling point	20
E. 5	0,1...999,9	filtertime constant [s]	0,5
$\underline{1.5}$	0... 99999	filterbandwidth	5
ELE	0... 100	external temperaturecompensation	BFF

4 1in

name	value range	description	default
L. 1	-19999... 99999	lower limit value $1(\mathbf{L} .1<-19999 \triangleq$ off $)$	-10
H.	-19999... 99999	upper limit value 1 (Hit $\mathrm{i}<-19999 \wedge$ off	10
Hy5. 1	0... 99999	hysteresis of limit value 1	1
DEL. 1	0...99999	alarm 1 delay	0
1.2	-19999... 99999	lower limit value 2 (L.Eア $<-19999 \wedge$ off	BFF
H.L ${ }^{\text {P }}$	-19999... 99999		BFF
Hy5.	0...99999	hysteresis of limit value 2	1
dEL.E	0...99999	alarm 2 delay	0
1.3	-19999... 99999	lower limit value 3 (L .3] $19999 \wedge$ off)	BFF
H. 3	-19999... 99999	upper limit value 3 (H.J 3 -19999 0 off)	DFF
Hリ5.	0... 99999	hysteresis of limit value 3	1
dEL. $]$	0...99999	alarm 3 delay	0

Resetting the controller configuration to factory setting (Default) \rightarrow chapter 11.1 (page 47)

Parameter setting level

6.3 Input scaling

When using current or voltage signals as input variables for 1 nP .1 or $\operatorname{InP.Z}$, scaling of input and display values at parameter setting level is required. Specification of the input value for lower and higher scaling point is in the relevant electrical unit (mA / V).

6.3.1 Input $1 \cap^{p}$

 [anf/inP.|/[arr = 3 is chosen.

The parameters nL and I H determine the input range Example mA:
$\mathrm{nL}=4$ and InH 020 means, the measurement is from 4 to 20 mA .
! For using the predetermined scaling with thermocouple and resistance
 Suit: must have the same value.

7 Calibration level

 or ${ }^{2}$ is chosen.

The measured value can be matched in the calibration menu (5 RL) Two methods are available:

7.1 Offset correction

(EanF/InP!/Earr=i):
possible on-line at the process

2-point correction

([anF/InP!/[arr=2):

- is possible off-line with process value simulator
- online in 2 Schritten zunächst den einen Wert korrigieren und später, z.B. nach dem Aufheizen des Ofens, den zweiten Wert korrigieren.

Offset correction (LanF/InP.//[arr =) :

Inl. I: The input value of the scaling point is displayed.
The operator must wait, until the process is at rest.
Subsequently, the operator acknowledges the input value by pressing key \square.
Bul. 1: The display value of the scaling point is displayed.
Before calibration, But. 1 is equal to 1 nit. 1 .
The operator can correct the display value by pressing keys $\Delta \square$.
Subsequently, he confirms the display value by pressing key \square.

2-point correction ([anF/InPl/Larr=1):

Int. 1: The input value of the lower scaling point is displayed.
The operator must adjust the lower input value by means of a process value simulator and confirm the input value by pressing key \square.
Bul. 1: The display value of the lower scaling point is displayed.
Before calibration, BuL. 1 equals int. i.
The operator can correct the lower display value by pressing the $\Delta \square$ keys. Subsequently, he confirms the display value by pressing key \square.
I nit. : The input value of the upper scaling point is displayed. .
The operator must adjust the upper input value by means of the process value simulator and confirm the input value by pressing key Ξ.
Buti. 1: The display value of the upper scaling point is displayed.
Before calibration Dutit equals InHI.

8 BlueControl

BlueControl is the projection environment for the BluePort ${ }^{\circledR}$ controller series of PMA. The following 3 versions with graded functionality are available:

Functionality	Mini	Basic	Expert
parameter and configuration setting	yes	yes	yes
controller and control loop simulation	yes	yes	yes
download: writes an engineering to the controller	yes	yes	yes
online mode/ visualisation	SIM only	yes	yes
creation of user defined linearizations	yes	yes	yes
configuration of extended operating level	yes	yes	yes
upload: reads an engineering from the controller	SIM only	yes	yes
diagnosis function	no	no	yes
file, save engineering data	no	yes	yes
printer function	no	yes	yes
online documentation, help system	no	yes	yes
measurement correction (calibration procedure)	no	no	yes
program editor	SIM only	yes	yes
data acquisition and trend function	no	no	yes
network and multiuser licence	yes	yes	yes
personal assistant function	no	no	yes
extended simulation	no	no	yes
extended diagnose and service			

The mini version is - free of charge - at your disposal as download at PMA homepage www.pma-online.de or on the PMA-CD (please ask for).

At the end of the installation the licence number has to be stated or DEMO mode must be chosen. At
DEMO mode the licence number can be stated subsequently under Help \rightarrow Licence \rightarrow Change.

9 Versions

Accessories delivered with the unit

Operating manual (if selected by the ordering code)

- 2 fixing clamps

Accessory equipment with ordering information

Description		Order no.
Heating current transformer 50A AC		$9404-407-50001$
PC-adaptor for the front-panel interface		$9407-998-00001$
Standard rail adaptor		$9407-998-00061$
Operating manual	German	$9499-040-62718$
Operating manual	English	$9499-040-62711$
Operating manual	French	$9499-040-62732$
Interface description Modbus RTU	German	$9499-040-63518$
Interface description Modbus RTU	English	
BlueControl (engineering tool)	Mini	Download
BlueControl (engineering tool)	Basic	
BlueControl (engineering tool)	Expert	
		$9407-999-11001$
		$9407-999-11011$

10 Technical data

INPUTS

PROCESS VALUE INPUT INP1

Resolution:	>15 bits
Decimal point:	0 to 4 digits behind the decimal point

Limiting frequency: 2 Hz (analog)
Dig. input filter: adjustable $0,1 \ldots 100 \mathrm{~s}$
Scanning cycle: 100 ms
Measured value 2-point or offfset correction
correction:

Thermocouple \rightarrow Table 1

Input resistance: $\quad \ddagger 1 \mathrm{MW}$
Source resistance effect: $\quad 1 \mu \mathrm{~V} / \Omega$
Temperature compensation
Internal temperature compensation
Maximum additional error $\pm 0,5 \mathrm{~K}$
External temperature compensation
between 0 and $100^{\circ} \mathrm{C}$ or adjustable 32 und $212^{\circ} \mathrm{F}$
Break monitoring
Sensor current: $£ 1 \mathrm{~mA}$
Resistance thermometer \rightarrow Table 2

Connection technique:
Lead resistance:
Input circuit monitoring:
3-wire

Resistance measuring range
The BlueControl software can be used for adaptation of the characteristic stored for temperature sensor KTY 11-6.

Physical measuring range:	$0 . .4500 \mathrm{hm}$
	$0 \ldots .4500 \mathrm{hm}$
Number of linearization segments	15

Current and voltage measuring ranges \rightarrow Table 3

Span start, span end:
Scaling:
Linearization:
Decimal point:
Input circuit monitoring:
anywhere within the measuring range
selectable -19999...99999
15 segments, adaptable via BlueControl adjustable with $4 . .20 \mathrm{~mA}$ and 2..10V: 12,5\% below span start (2mA, 1V)

CONTROL INPUT DI1

Configurable as switch or push-button!
Connection of a potential-free contact suitable for switching "dry" circuits.

Switched voltage: $\quad 2,5 \mathrm{~V}$
Current:
50 mA

CONTROL INPUTS DI2, DI3 (OPTION)

Configurable as switch or push-button!
Optocoupler input for active triggering
Nominal voltage
24 V DC external
Current sink (IEC 1131 type 1)
Logic "0"
Logic "1"
Current requirement
Transmitter supply UT (Option)
Power: $\quad 22 \mathrm{~mA} / \ddagger 18 \mathrm{~V}$
If the universal output OUT3 is used there may be no external galvanic connection between measuring and output circuits!

FILTER

A first order mathematic filter which is adjustable for time constant and bandwidth is built in.
The bandwidth is the adjustable tolerance around the process value within which the filter is active. Measured value changes exceeding the adjusted bandwidth are output directly.

OUTPUTS

Survey of outputs

Output	Used as
OUT1 (relay)	
OUT2 (relay) OUT3 (logic)	Limit contacts, alarms, control output
OUT3 (continuous)	Control output, process value, set-point, control deviation, $13 \mathrm{~V} / 22 \mathrm{~mA}$ transmitter power supply

* All logic signals can be combined in an OR function!

RELAY OUTPUTS OUT1, OUT2

Contact type:
Max. contact rating:
Min. contact rating:
Operating life (electr.):

2 NO contacts with common connection
500 VA, $250 \mathrm{~V}, 2 \mathrm{~A}$ at $48 . . .62 \mathrm{~Hz}$, resistive load
6V, 1 mA DC
800.000 duty cycles with max. rating

Note:

If the relays OUT1...OUT3 operate external contactors, these must be fitted with RC snubber circuits to manufacturer specifications to prevent excessive switch-off voltage peaks..

OUT3 AS UNIVERSAL OUTPUT

Galvanically isolated from the inputs.

Freely scalable	
Resolution:	11 Bit
Timeconstant of DA-transducer T90	50 ms
Limitfrequency of the whole continuous controller	$>2 \mathrm{~Hz}$

Current output

0/4... 20 mA configurable.

Signal range:	$0 \ldots .$. ca. $21,5 \mathrm{~mA}$
Max. load:	$£ 500 \mathrm{~W}$
Load effect:	$0,02 \% / 100 \mathrm{~W}$
Resolution:	$£ 22 \mathrm{~mA}(0,1 \%)$
Accuracy	$£ 40 \mathrm{~mA}(0,2 \%)$

Voltage output (short-circuit proof)

0/2...10V configurable
Signal range: $\quad 0 . . . c a .11 \mathrm{~V}$
Min. load: $\quad \geq 2 \mathrm{~kW}$
Load effect: kein Einfluß
Resolution: $\quad £ 11 \mathrm{mV}(0,1 \%)$
Accuracy $\quad £ 20 \mathrm{mV}(0,2 \%)$
OUT3 used as transmitter supply
Output power: $\quad 22 \mathrm{~mA} / \ddagger 13 \mathrm{~V}$
OUT3 used as logic output
Load £500 W
$0 / £ 20 \mathrm{~mA}$
Load > 500 W
$0 />13 \mathrm{~V}$

FUNCTIONS

Control behaviour

- Signaller with adjustable siwtching difference (ON/OFF controller)
- PID controller (2-point and continuous)

Control parameters self-adjusting or manually adjustable via front panel keys or BlueControl software.

Limit value functions

Monitoring is provided for: exceeded max., min. or max. and min. limit value with adjustable hysteresis.

The following signals can be monitored:

- Measured value
- Process value
- Control deviation
- Control deviation with suppression after start-up or set-point changes
- Set-point
- Correcting variable Y

Functions

- Measured value monitoring
- Measured value monitoring with storage. Reset via front panel keys or digital input
- Measured value change
- Measured value change and storage

Several limit values and alarms can be combined by a logic OR function and output e.g. as a common alarm.

ALARM + MAINTENANCE MANAGER

Displayof error messages, warnings and stored limit signallings in the error list.
Messages are stored and can be reset manually.
Possible elements of the error list:

- Sensor break, short circuit, polarity error
- Self-tuning error
- Stored limit values
- E.g. recalibration warning
(when exceeding an adjustable number of operating hours, a message is displayed)
- E.g. maintenance interval of switching element (when exceeding an adjustable number of switching cycles, a message is displayed)
- Internal errors (RAM, EEPROM, ...)

DISPLAY

Display

5-digit 19 mm LED

POWER SUPPLY

Dependent of order:

AC SUPPLY

Voltage:
Frequency:
Power consumption
90... 260 V AC
48... 62 Hz
approx. 7,0 VA

UNIVERSAL SUPPLY 24 V UC

AC voltage:
Frequency:
DC voltage:
Power consumption:

BEHAVIOUR WITH POWER FAILURE

Configuration, parameters and adjusted set-points, control mode:
Non-volatile storage in EEPROM

BLUEPORT FRONT INTERFACE

Connection of PC via PC adapter (see "Accessory equipment"). The BlueControl software is used to configure, set parameters and operate the $K S 4 x-1$.

BUS INTERFACE (OPTION)

Galvanically isolated
Physical:
RS 422/485

Protocol:
Transmission speed: 2400, 4800, 9600, 19.200 bits/sec Address range:1... 247

Number of controllers per bus: 32
Repeaters must be used to connect a higher number of controllers.

ENVIRONMENTAL CONDITIONS

Protection modes

Front panel:	IP 65
Housing:	IP 20
Terminals:	IP 00

Permissible temperatures

For specified accuracy:	$0 \ldots 60^{\circ} \mathrm{C}$
Warm-up time:	≥ 15 minutes
For operation:	$-20 \ldots 65^{\circ} \mathrm{C}$
For storage:	$-40 . . .70^{\circ} \mathrm{C}$

Humidity

75% yearly average, no condensation

Shock and vibration

Vibration test Fc (DIN 68-2-6)
Frequency: $\quad 10$... 150 Hz
Unit in operation: $\quad 1 \mathrm{~g}$ or $0,075 \mathrm{~mm}$
Unit not in operation: $\quad 2 \mathrm{~g}$ or $0,15 \mathrm{~mm}$
Shock test Ea (DIN IEC 68-2-27)
Shock: 15g
Duration: 11ms

Electromagnetic compatibility

Complies with EN 61 326-1
(for continuous, non-attended operation)

ALLGEMEINES

Housing

Material:
Makrolon 9415 flame-retardant
Flammability class: UL 94 V0, self-extinguishing

Plug-in module, inserted from the front

Safety test

Complies with EN 61010-1 (VDE 0411-1):
Overvoltage category II
Contamination class 2
Working voltage range 300 V
Protection class II
cUL certification
(Type 1, indoor use)
File: E 208286

Electrical connections

Screw terminals for 0,5 to $\mathbf{2 , 5} \mathrm{mm}^{2}$

Mounting

Panel mounting with two fixing clamps at top/bottom or right/left, High-density mounting possible

Mounting position: uncritical
Weight:
0,27kg

Accessories delivered with the unit
 Operating manual
 Fixing clamps

Tabelle 1 thermocouple measuring range

thermocouple type		measuring range		accuracy	resolution (\varnothing)
L	Fe-CuNi (DIN)	$-100 . . .900^{\circ} \mathrm{C}$	$-148 . . .1652^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,05 K
J	Fe-CuNi	-100...1200 ${ }^{\circ} \mathrm{C}$	-148... $2192^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,05 K
K	$\mathrm{NiCr}-\mathrm{Ni}$	$-100 . . .1350^{\circ} \mathrm{C}$	-148... $2462{ }^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,1 K
N	Nicrosil/Nisil	-100...1300 ${ }^{\circ} \mathrm{C}$	-148... $2372^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,1 K
S	PtRh-Pt 10\%	$0 . . .1760^{\circ} \mathrm{C}$	$32 . . .3200^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,1 K
R	PtRh-Pt 13\%	0... $1760^{\circ} \mathrm{C}$	$32 . .3200^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,1 K
T	Cu-CuNi	$-200 . . .400^{\circ} \mathrm{C}$	-328...752 ${ }^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,025 K
C	W5\%Re-W26\%Re	0... $2315^{\circ} \mathrm{C}$	$32 . .4199{ }^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,2 K
D	W3\%Re-W25\%Re	0... $2315^{\circ} \mathrm{C}$	$32 . .4199{ }^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,2 K
E	NiCr-CuNi	$-100 . .1000^{\circ} \mathrm{C}$	-148...1832 ${ }^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,05 K
$\mathrm{B}^{(1)}$	PtRh-Pt6\%	$0(100) \ldots . .1820^{\circ} \mathrm{C}$	32(212)...3308 ${ }^{\circ} \mathrm{F}$	$\leq 3 \mathrm{~K}$	0,15 K
	special	$-25 . . .75 \mathrm{mV}$		$\leq 0,1 \%$	0,005 \%

${ }^{(1)}$ Values for type B are valid from $100^{\circ} \mathrm{C}$.

Table 2 Resistance transducer measuring ranges

Type	Meas.curr.		ange	Accuracy	Resolution (\varnothing)
Pt100 Pt1000 a	0,2 mA	$\begin{aligned} & -200 . . .850^{\circ} \mathrm{C} \\ & -200 . . .850^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -328 . . .1562^{\circ} F \\ & -328 . .1562^{\circ} F \end{aligned}$	$\begin{aligned} & \leq 1 \mathrm{~K} \\ & \leq 2 \mathrm{~K} \end{aligned}$	$0,05 \mathrm{~K}$
Special		$0 \ldots 4500 \Omega^{* *}$		$\leq 0,1 \%$	0,005 \%
Special					
Pot.					
Pot.		$0 . . .450 \Omega^{* *}$			
Pot.					

Table 3 Current and voltage measuring ranges

Measuring range	Input resistance	Accuracy	Resolution (\varnothing)
0... 20 mA	49Ω (voltage requirement	$\leq 0,1 \%$	$0,75 \mu \mathrm{~A}$
0...10 Volt	$\approx 110 \mathrm{k} \Omega$	$\leq 0,1 \%$	0,4 mV
$-2,5 . .115 \mathrm{mV}$ *	$\geq 1 \mathrm{M} \Omega$	$\leq 0,1 \%$	$4 \mu \mathrm{~V}$
-25...1150 mV*	$\geq 1 \mathrm{M} \Omega$	$\leq 0,1 \%$	$40 \mu \mathrm{~V}$
-25... 90 mV *	$\geq 1 \mathrm{M} \Omega$	$\leq 0,1 \%$	$4 \mu \mathrm{~V}$
-500...500 mV*	$\geq 1 \mathrm{M} \Omega$	$\leq 0,1 \%$	$40 \mu \mathrm{~V}$
-5...5Volt	$\approx 110 \mathrm{k} \Omega$	$\leq 0,1 \%$	$0,4 \mathrm{mV}$

* high-impedance voltage ranges without break monitoring

11 Safety hints

This unit was built and tested in compliance with VDE 0411-1 / EN 61010-1 and was delivered in safe condition.
The unit complies with European guideline 89/336/EWG (EMC) and is provided with CE marking.
The unit was tested before delivery and has passed the tests required by the test schedule. To maintain this condition and to ensure safe operation, the user must follow the hints and warnings given in this operating manual.
The unit is intended exclusively for use as a measurement and control instrument in technical installations.

Warning

If the unit is damaged to an extent that safe operation seems impossible, the unit must not be taken into operation.

ELECTRICAL CONNECTIONS

The electrical wiring must conform to local standards (e.g. VDE 0100). The input measurement and control leads must be kept separate from signal and power supply leads.
In the installation of the controller a switch or a circuit-breaker must be used and signified. The switch or circuit-breaker must be installed near by the controller and the user must have easy access to the controller.

COMMISSIONING

Before instrument switch-on, check that the following information is taken into account:

- Ensure that the supply voltage corresponds to the specifications on the type label.
- All covers required for contact protection must be fitted.
- If the controller is connected with other units in the same signal loop, check that the equipment in the output circuit is not affected before switch-on. If necessary, suitable protective measures must be taken.
- The unit may be operated only in installed condition.
- Before and during operation, the temperature restrictions specified for controller operation must be met.

SHUT-DOWN

For taking the unit out of operation, disconnect it from all voltage sources and protect it against accidental operation.
If the controller is connected with other equipment in the same signal loop, check that other equipment in the output circuit is not affected before switch-off. If necessary, suitable protective measures must be taken.

MAINTENANCE, REPAIR AND MODIFICATION

The units do not need particular maintenance.

Warning

When opening the units, or when removing covers or components, live parts and terminals may be exposed.

Before starting this work, the unit must be disconnected completely.

After completing this work, re-shut the unit and re-fit all covers and components. Check if specifications on the type label must be changed and correct them, if necessary.

Caution
When opening the units, components which are sensitive to electrostatic discharge (ESD) can be exposed. The following work may be done only at workstations with suitable ESD protection.
Modification, maintenance and repair work may be done only by trained and authorized personnel. For this purpose, the PMA service should be contacted.
The cleaning of the front of the controller should be done with a dry or a wetted (spirit, water) kerchief.

11.1 Resetting to factory setting

In case of faulty configuration, Digital 280-1 can be reset to the default condition.

For this, keep the following two keys pressed
 during power-on :

The digital indicator reset to default is signalled by displaying FEEE shortly in the display. Subsequently, the digital indicator returns to normal operation.
Index
0-9
2-point correction 37
A
Alarm handling 15
Anschlußbeispiele
OUT3 als Logikausgang 8
B
BlueControl. 40
Bus interface
Technical Data 43
C
Calibration (5RL) 37
Calibration level ([RL) 37-39
Configuration examples
2-point controller 31
Signaller 30
Configuration level Parameter survey 23
Configuration-level (LanF)
Configuration-Parameter 24-29
Connecting diagram 6
Connecting examples
di2/3, 2-wire transmitter supply 7
OUT3 transmitter supply 7
RS485 interface 8
continuous controller 32
control inputs di1, di2, di3
Configuration 27
D
Digital inputs di1, di2, di3Technical data42
E
Equipment 41
F
Factory setting 22
Front view 10
Frontansicht 10
I
Input INP1 configuration. 24
Parameter setting 35

